Scalable Structure Learning of K-Dependence Bayesian Network Classifier
نویسندگان
چکیده
منابع مشابه
K-Dependence Bayesian Classifier Ensemble
To maximize the benefit that can be derived from the information implicit in big data, ensemble methods generate multiple models with sufficient diversity through randomization or perturbation. A k-dependence Bayesian classifier (KDB) is a highly scalable learning algorithm with excellent time and space complexity, along with high expressivity. This paper introduces a new ensemble approach of K...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملLearning a Flexible K-Dependence Bayesian Classifier from the Chain Rule of Joint Probability Distribution
As one of the most common types of graphical models, the Bayesian classifier has become an extremely popular approach to dealing with uncertainty and complexity. The scoring functions once proposed and widely used for a Bayesian network are not appropriate for a Bayesian classifier, in which class variable C is considered as a distinguished one. In this paper, we aim to clarify the working mech...
متن کاملScalable Learning of Bayesian Network Classifiers
Ever increasing data quantity makes ever more urgent the need for highly scalable learners that have good classification performance. Therefore, an out-of-core learner with excellent time and space complexity, along with high expressivity (that is, capacity to learn very complex multivariate probability distributions) is extremely desirable. This paper presents such a learner. We propose an ext...
متن کاملRestricted Bayesian Network Structure Learning
Learning the structure of a Bayesian network from data is a difficult problem, as its associated search space is superexponentially large. As a consequence, researchers have studied learning Bayesian networks with a fixed structure, notably naive Bayesian networks and tree-augmented Bayesian networks, which involves no search at all. There is substantial evidence in the literature that the perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3035175